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STATIONARY FLOWS IN CHANNELS DURING SIMILARITY WAVE PROPAGATION OF A 

CHEMICAL REACTION WITH AN ABRUPT CHANGE IN VISCOSITY 

G. V. Zhizhin and A. S. Segal UDC 532.542:660.095.26 

The channel flow of reacting media with a viscosity which increases sharply with the 
degree of chemical conversion is accompanied by adhesion of the product to the channel wall 
and the formation of a stream of unreacted substance along the axis [I-6]. This phenomenon 
was studied numerically in [2, 3] and experimentally in [4] using the example of a polymeriza- 
tion in the continuous tube reactor. An analytic description was given in [5, 6] of the 
dynamics of the process with the condition that the viscosity and density of the medium is 
unambiguously dependent on the time of the reaction. This condition is satisfied in the ab- 
sence of he,at transfer in the medium (for example, in the isothermal flow of a medium with 
negligible diffusion). However, many chemical reactions are accompanied by intensive heat 
release and heat transfer, and the results obtained in [5, 6] are inapplicable in these cases. 
This pertains particularly to the practically important phenomenon of similarity wave propa- 
gation of a reaction, which was examined in [7-11] for the case of polymerization in a sta- 
tionary medium. To allow for molecular heat transfer -- which is important in this case -- 
the method developed in [5, 6] was modified in [12]. However, the authors could not obtain 
an analytic description of flow in this case and instead presented results of numerical cal- 
culations of some of its characteristics. 

Here we examine stationary flows of a reacting medium in plane and cylindrical channels 
during the similarity wave propagation of the reaction accompanied by a sharp increase in 
viscosity. The study will be based on the method of calculating laminar flows in a boundary 
layer with a surface of discontinuity. This method was developed in [13]. 

Within the framework of the assumptions made in [12], we obtained an analytic solution 
to the problem and found the form of the reaction wave in explicit form. The flow-rate -- 
pressure characteristics of the channel were determined. It is shown that a small parameter 
of the problem -- the ratio of the viscosities of the medium before and after the wave -- in- 
troduces a singular perturbation into the solution which results in a sharp distortion and 
extension of the wave profile and the profile of the longitudinal velocity component near 
the axis, i.e., it leads to the formation of an axial jet. As a consequence of this, the 
condition of uniform smallness of the angle of inclination of the wave to the axis that was 
adopted in [12] is not satisfied, and the stationary reaction wave ceases to exist away from 
the axis. The region of existence of the wave becomes smaller with a decrease in the ratio 
of viscosities on the wave, which may lead to destabilization of the steady-state process. 

I. We are examining stationary flows in plane and cylindrical channels in the presence 
of a chemical reaction wave. The medium is assumed to be incompressible, and heat release 
due to dissipation of mechanical energy is not considered. The thickness of the wave is as- 
sumed to be small in comparison to the Characteristic cross-sectional dimension of the channel. 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. I, 
pp. 61-68, January-February, 1986. Original article submitted October 5, 1984. 

54 0021-8944/86/2701-0054512~ O 1986 Plenum Publishing Corporation 



Given these assumptions, the wave can be regarded as a surface of discontinuity. Mean- 
while, the projection of the local velocity of the flow on the normal ~o this surface is equal 

to the velocity of a wave in a stationary medium (the local law of Michelson [14]). 

As is known [14], stable stationary chemical-reaction waves in channels are observed at 

mean-flow-rate velocities U(s = V/U ~ I) which are high compared to V. Thus, by virtue of the 

local Michelson law, the transverse components of flow velocity are on the order of V, while 

the longitudinal components are obviously on the o~der of U. 

Let us examine a flow in a plane channel. We introduce a Cartesian coordinate system 
(x, y) so that its x axis coincides with_the channel axis. The scales of the hydrodynamic 
quantities are chosen so that the corresponding dimensionless variables will be on the order 
of unity [13, 15]: V is the scale of the transverse component of velocity v; U is the scale 
of the longitudinal component of velocity u, the distance from the channel axis to the wall 
of the channel; Y is the scale of the coordinate y; X = YU/V is the scale of the coordinate 
x; P = p2U2/YV is the scale of the pressure gradient (P2 is the viscosity of the reaction 
product). Then referring all of the quantities to their scales, we write the equations of 

motion in dimensionless variables: 

( a P l + m / 8 ~ - ~ j + - -  " 
u~-~ + vl W J = - 7 ;  ay+ 1' 

[ ao 1 0o1' ~ ap,+_ , a% +0%'~ 
e'l:{%kul"-~x Vl"~y ) = -  Oy -- ale'a---l-~+Ox m -%-~$;Oy ] 

Out Ov t 
0-7 + ~ =0 ;  

l~e+ ~u,~--~-+ u,.; v+ a.~ ] = a~: + ~ ax - - r  + ay--~-' 

[ 0% 0%'~ Op 2 O~v2 O~v,. 
~ , R ~ k u , ~  + v , W )  = - o-7 + + ' - -  + ~' Ox m ~gm., 

0 %  0 %  
o--Z + -~-u = O, 

(I.+) 

(i .2) 

(i ,3) 

(i .4) 

(i .5) 

(i ,6) 

where ~ = ~i/p2; Re2 = VY/pe is the Reynolds number; all of the dimensionless variables have 
the same notation as their dimensional analogs; the subscript I pertains to flow up to the 
surface of discontinuity; the subscript 2 pertains to flow after this surface. 

Following [12, 13], we assume that, the angle of inclination of the surface of discon- 
tinuity to the channel axis B is uniformly small over the entire flow region and is on the 
order of E. Then the conditions of conservation of mass and the normal and tangential com- 
ponents of momentum on the surface of discontinuity in dimensionless variables take the form 

(ultg ~ -  va) IF = (u2tg ~ _  vJl~;  (1.7) 

~2+ D-~z + tg+ :Tyy + ~-x)-- p + t g + j l . =  (2e -~-x tg+---~-y -- e - ' ~ ' x  - -  

{ 2 0 u l  4 0 v l  " " move \  Ou m " 8v " " 0% -++ 
a~e - ~ y t g , + e  ~-z tg ,  2e-~]~--p!]+ = ( e  m - ~ - t g , §  (+.9) 

where F = F(x) is the dimensionless profile of the surface of discontinuity; tan B = dF/dx. 
We supplement the conservation conditions on the surface of discontinuity by the condition of 
continuity of the tangential component of velocity (adhesion of flows) and the local Michelson 
law: 

(u~ + +~v~ tg 8)IF = (u2 + ~2v~ tg 8)IF; ( +. 10) 

( - u l  tg ~ + v~)lF = (i § e ~ tW ~)1/< (+. 11) 

The v i s c o s i t y  of the  r e a c t i o n  product  in  the  case  of p o l y m e r i z a t i o n  i n c r e a s e s  g r e a t l y  
(by fou r  to seven o rde r s  of magnitude)  compared to the  v i s c o s i t y  of the  i n i t i a l  mix tu re .  Here,  
the  d imens ion l e s s  pa ramete r s  a and Re2 a re  c o n s i d e r a b l y  l e s s  than u n i t y .  

2. We w i l l  so lve  the  problem in a z e r o t h  approximat ion  wi th  r e s p e c t  to a s m a l l  Reynolds 
number Re2 and a small  r a t i o  o f t h e  t r a n s v e r s e  and l o n g i t u d i n a l  s c a l e s  e. Equat ions ( 1 . 1 ) -  
(1.6) and conditions (1.7)-(1.11) do not contain any terms on the order of e, so the zeroth 
approximation will be valid to within terms of the order 2. With the same accuracy, Eqs. 
(1.2) and (1.5) and condition (1.9) lead to the conclusion that the pressure is constant 
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across the channel [p = const (y)], 
form 

while the remaining equations and conditions take the 

~ o z u l l a y  2 = d p l d x ;  (2.1) 

O2U2/Oy 2 ~--- dp/dx; ( 2 . 2 )  

OuJOx + avJOy = O; ( 2 . 3 )  

OuJOx + Ovz/Oy = O; (2.4) 

tQIF = tt2[F; ( 2 . 5 )  

aOUl/O,,y] F = OuJOglF; ( 2 . 6 )  

v~lF - v~l~; ( 2 . 7 )  

( - - t  h tg  [~ -6 V~)IF = t.  ( 2 . 8 )  

It should be noted that the small parameter ~ in Eq. (2.1) is with the higher derivative 
and may introduce a singular perturbation into the solution. Thus, the terms containing the 
multiplier ~ cannot be deliberately discarded (see [16], for example). 

We also augment the conditions on the surface of discontinuity with the condition of sym- 
metry of the flow relative to the x axis, conditions of adhesion and impermeability on the 
wall, and an integral condition of conservation of flow rate over an arbitrary cross section 
of the channel: 

Oul/OY ly~o = 0; (2.9) 

u~lu=l = v2ly=l = 0; ( 2 . 1 0 )  

(21 ) 
o F 

Equations (2.1)-(2.4) and conditions ( 2 . 5 ) ~ ( 2 . 1 1 )  determine the problem being examined. 
Integrating (2.1) and (2.2) over y and (2.3) and (2.4) over x and inserting the results into 
Eqs. (2.5)-(2.11), after performing some transformations we obtain 

x = x o (F) = 
IFI 

U 1 ~ -  

3 ( t - -~)(1+~+2-r  = 2 - - 3 1 F I + I F I  3, 
T (I q- 1,~a) z - =  2 (i + ?l F 13) " 

3[(1 + yF 2) - -  (t -F ?)y2]/2(1 + vlF[3); 

u2 = 3(t - -  yz)/2(l § "~IFID; 

(2.12) 

(2.13) 

(2.14) 

(2.13) 

(2.16) 

( 2 . 1 7 )  

v~ = ylFlyf(2--BIF1 - -  y tFP) -/-(i %- y)lFlY~l/(t  - -  IFI)(t + IF] + 2VF2); 
v~ = yF2(l - -  y2)(2 + y)/(l  - -  lFI)(i + [gl @ 2yF~); 

1 

9--f ,  - + + m Ap d~ 

where y = ~-i _ I; Ap is the pressure gradient between the reference section, in which the 
surface of discontinuity adjoins the walls of the channel, and the current section; the ex- 
plicit expression for the integral (2.17) is awkward and is omitted here. Equations (2.12)- 
(2.17) give the explicit dependence of the hydrodynamic fields on the coordinate y and the 
parametric dependence on x. Figure la shows profiles of the surface of discontinuity with 

= I, 10 -I , 10 -2 , and 10 -6 (lines I-4). It follows from (2.12) that 

x o ( 1 ) = 0 ,  x o ( 0 ) = 1 ,  x ~ ( t ) = 0 ,  x~(0) = - -  3/2,. lira x o ( F ) = 0 .  
~ o , F ~ o  

In the reference section, the surface of discontinuity is turned so that it is perpen- 
dicular to the channel walls. The coordinate of the apex and the angle of inclination of 
the surface of discontinuity to the axis at the apex are independent of a. With a decrease 
in ~ to zero, the function x0(F) on the intervals [--I, O) and (0, I] uniformly converges to 
zero and the surface of discontinuity is distorted into a T-shape. Such behavior of the solu- 
tion means that the small parameter ~ introduces a singular perturbation into it [16]. Here, 
the condition adopted earlier regarding the uniform smallness of the angle 8 over the entire 
flow region ceases to be satisfied. The angle B remains small until the surface of discon- 
tinuity is located in the neighborhood of the axis. When the surface is away from the axis 
andnear the reference section, it becomes distorted and is oriented almost normal to the axis. 
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Figure 2 shows profiles of the longitudinal component of velocity in different sections 
of the channel with ~ = 0.01 (the dashed line represents the surface of discontinuity). It 
is apparent that the peripheral part of the channel is filled with a low-fluidity reaction 
product and that the central part is filled by a stream of unreacted, faster-moving material. 
The reaction product is entrained by the axial stream with an increase in the coordinate x, 
and the velocity of the product increases. Here, the velocity of the initial mixture on the 
axis initially increases due to a decrease in the channel cross section and then decreases 
to its former value due to the transfer of momentum to the reaction product. 

The transverse componentof velocitycalculated from Eqs. (2.15) and (2.16) is small com- 
pared to the longitudinal component in the region of small values of the angle B. Near the 
reference section, where the angle B increases sharply, this scale relation is disturbed 
[Eqs. (2.15) and (2.16) have a singularity at x = 0 (F - i)]. 

At flow rates which are fairly large for the exit of the surface of discontinuity from 
the channel (the "breakdown" regime Q ~ 2LV, where Q is the volumetric flow rate and L is the 
length of the channel), the flow-rate--discharge characteristic can be calculated from Eqs. 
(2.12), (2.17). At lower flow rates, the surface of discontinuity is localized inside the 
channel and the characteristic takes the form 

1 

0 

where I = L/X = 2LV/Q is the dimensionless length of the channel. 

Figure 3 shows the dimensional flow-rate--discharge characteristics of a plane channel 
with ~ = 1.10 -l and 10 -2 (lines I-3, Y = 7.5-10 -2 m, V = 2.5-10 -4 m/sec, ~I = 5.7"10 -~ kg/m- 
sec, g = 0.1). The volume of the part of the channel occupied by the high-viscosity reaction 
product decreases with an increase in the flow rate, and the characteristic becomes steeper. 
It is significant that the flow-rate--discharge characteristics in this case are monotonic and 
that no hysteresis phenomena are observed [3]. 

3. As was shown in Part 2, the solution obtained with the assumption of uniform small- 
ness of the angle B over the entire flow region becomes incorrect near the reference section. 
To find a steady-state solution valid over, the entire flow region, it is necessary to drop 
this assumption. Taking the angle B to be arbitrary, we find that the equations of motion in 
dimensionless variables do not change and that the conditions on the surface of discontinuity 
take the form* 

*In Eqs. (3.1)-(3.5), in contrast to (1.7)-(1.9), tan ~ is determined through dimensional vari- 
ables F and x for convenience in evaluating the orders of magnitude of the quantities and, as 
before, it is on the order of unity. 
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( u r t g  ~ - -  evl)lF = (u 2 tg ~ - -  ev2)IF; ( 3 . 1 )  

[ ~z / 20ul au 1 OVl~ I ( 2 ~  Ou~ Ou 2 Ov~ 

[~[ Out O't Or1\ [ 8u 2 Ov 0"2 ]1 (3.3) te ~-y tg ~ + @ ~-z tg fi-- 2e'-~-y ) -- p,] L. = tg ['W ~ + ' ' ~ t ~ - 2 " '  W-P.]l.; 
(U~ n Lav  x tg ~)[F = (u~ + e,~ tg ~)[~; ( 3 . 4 )  

(--u~ tg ~ -~ ev~)IF ---- e(l ~- tg z ~)~/2. ( 3 , 5 )  

C o n d i t i o n s  ( 3 . 1 )  and ( 3 . 4 )  a r e  e q u i v a l e n t  t o  ( 2 . 5 )  and ( 2 . 7 ) .  D i s c a r d i n g  t e r m s  on t h e  
order of ~2 in (3.2) and (3.3), after several transformations we obtain 

~zOu~lOy IF = Ou~lOy IF + O(e); ( 3 . 6 )  

P, IF = P~IF + O(e2). (3.7) 

In the zeroth approximation with respect to e, the last conditions coincide, respectively, 
with (2.6) and the pressure continuity condition. However, in contrast to (2.6), condition 
(3.7) turns out to be valid only to within terms on the order of ~. 

Condition (3.5) is quite different from (2.8), which corresponds to a small angle ~. 
Here, we have the following for the surface of discontinuity: 

IFI 

x = xz (/7) ___ J __ j' (], (~) __ e2)~/~d~, ( 3 . 8 )  
o 

where f(~) is the integrand in (2.12). The limits of integration in (3.8) were calculated 
so thatthe coordinates of the apex of the surface of discontinuity calculated from this for- 
mula and from Eq. (2.12) would coincide. Equations (2.13)-(2.17) remain the same for the 
hydrodynamic fields. 

The dashed lines in Fig. I show the profile of the surface of discontinuity calculated 
from (3.8) with ~ = 0.01 and ~ = 0.1. Away from the reference section the angle 6 is small, 
f ~ s, and solution (3.8) turns out to be close to (2.12): 

;FI 
~2 ~. d~ x = x l ( F ) = x o ( F  ) ~ a  7~-)+o(e2) .  ( 3 . 9 )  

0 

The value of f decreases and the last formula becomes inaccurate as the reference section is 
approached. With attainment of the critical section F = F,, in which 

] = ] , = e ,  ( 3 . 1 0 )  

the surface of discontinuity is turned so that it is normal to the axis ((dx~/dF) IF, = 0), and 
solution (3.8) ceases to exist. 

The disappearance of the steady-state solution at F > F, is connected with the incom- 
patibility of conditions (2.10) on the channel walls and the Michelson law in the form (3.5), 
which corresponds to a similarity wave regime of propagation of the reaction. The solution 
obtained on the basis of the Michelson law should be quite nonsteady in this region, since at 
F > F, the velocity of the wave V becomes greater than the local flow velocity and the wave 
will penetrate upstream. To realize a steady-state regime, it is necessary for the reaction 
propagation regime to change sufficiently far from the channel axis: here, a "restraining 
zone" which stabilizes the reaction wave [14] should exist. 

In the case of polymerization, ~ ~ g, and the asymptotic expression F, = (3~/e) I/~ + 
o(~ I/4) can be obtained for the root of Eq. (3.10). It follows from this expression that with 
sufficiently small ~ the region in which no steady-state solution exists covers most of the 
channel cross section. 

4. Let us examine stationary flows in a cylindrical channel with similarity propagation 
of the reaction. The system of equations of motion in dimensionless variables takes the fol- 
lowing form in the zeroth approximation with respect to small Re2 and ~: 

1 0 ( OUl~ dp 1 0 (Ouz )  dp 

Out t 0 Ou2 t O 
o--i + - 7  W (yvO = O, ~ + -7- 9 7  (yv~) = O, 
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F 1 

0 F 

where x and y are the axial and radial coordinates; u and v are the axial and radial compo- 

nents of the velocity vector, having the same notation as the corresponding coordinates and 

velocity components in the case of a plane channel. The form of conditions (2.5)-(2.10) re- 

mains the same. 

It can be shown such a formulation of the problem is equivalent to that proposed in [12], 
where equations of motion of a medium with variable viscosity were written for the entire 
flow region. However, the approach examined in the present work reveals the role of the 
small parameter ~ and makes it possible to solve the problem with arbitrary values of the 

angle 8. 

Performing the necessary calculations, we obtain the following for the sought variables 

i 

x xo(F) = ~]2(l--~2)(t+Yt2)d~;" 
(i + ?~4)2 (4. I ) 

F 

u 1 = 2[@ + 7 f  2) - -  (i q- ?)y21/(l q- ?f~);  ( 4 . 2 )  

u2 = 2(I -- f ) / ( l  + ?F4); (4.3) 

vl = ?fy[(i -- 2F ~ -- ?f 4) + (i --?)F2y2]/(i -- f2)(i (4.4) 

-t- ?f~); 
v 2 = ?F3(l  - -  f )= /y ( i  - -  F=)(i q- ?F2); ( 4 . 5 )  

l- 

Ap = 16.[ (t --  $2)(t + ?$2)d ~ ( 4 . 6 )  

F 

Profiles of the surface of discontinuity for different values of ~ are shown in Fig. ]b. 
As in the case of a plane channel, the small parameter ~ introduces a singular perturbation 
into the solution. This leads to sharp distortion and extension of the profile in the neigh- 
borhood of the axis (the values of a are the same as in Fig. la). 

An important feature of the cylindrical channel is that with a decrease in a to zero, 
the coordinate of the apex of the surface of discontinuity increases without limit rather 
than remaining constant. Here, the axial stream of unreacted material is highly extended 
along the channel axis, which leads to "breakdown" of the tube reactor [i-4] at relatively 

low flow rates. 

It should be noted that given an initial mixture and a product with the same velocities, 
= I, and (4.1) takes the form x = x0(F) = (2/3)(F 3 -- 3F + 2). This form of (4.1) coincides 

with the well-known solution for the shape of the flame from a bunsen burner [14]. 

The flow-rate--discharge characteristic of the cylindrical channel at Q ~ vYLV/x0(0) 
("breakdown" regime) is given parametrically by Eqs. (4.1) and (4.6). At lower flow rates 
it takes the form 

Ap i6 - ~  + 8 [I  - x0 (0 ) ] ,  
0 

w h e r e  l = L /X = ~YLV/Q i s  t h e  d i m e n s i o n l e s s  l e n g t h  o f  t h e  c h a n n e l .  The f l o w - r a t e - - d i s c h a r g e  
c h a r a c t e r i s t i c s  c o i n c i d e  w i t h  t h o s e  o b t a i n e d  i n  [12]  and a r e  q u a l i t a t i v e l y  t h e  same as  t h e  
c h a r a c t e r i s t i c s  f o r  a p l a n e  c h a n n e l .  

When t h e  c o n d i t i o n  o f  u n i f o r m  s m a l l n e s s  o f  t h e  a n g l e  B i s  d r o p p e d ,  we h a v e  t h e  f o l l o w i n g  
f o r  t h e  p r o f i l e  o f  t h e  s u r f a c e  o f  d i s c o n t i n u i t y  

F 

x = x 1 ( f )  = x o ( 0 )  - -  S (12 ( ~ )  _ _  e ~ ) , / 2 d ~ ,  
0 

w h e r e  f ( ~ )  i s  t h e  i n t e g r a n d  i n  ( 6 . 1 ) .  E q u a t i o n s  ( 3 . 9 )  and  ( 3 . 1 0 )  h a v e  t h e  same f o r m .  

The asymptotic expression for the root of Eq. (3.10) in the case of a large increase in 
viscosity on the surface of discontinuity F, = (2a/E) I/~ + o(al/e). In the case of equal 
viscosities, we obtain the expression F, = (I -- E/2) I/2 for the root. This expression coin- 
cides with the analogous formula obtained from the solution for the bunsen burner [14]. 
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